健康成年人群尿中对硝基酚水平对甲状腺功能的影响——基于美国NHANES数据库
摘要:
背景
对硝基酚(PNP)是有机磷农药对硫磷和甲基对硫磷主要的特异性代谢产物。既往的研究发现对硫磷和甲基对硫磷可能具有内分泌干扰作用,但证据较为有限。
目的
探讨健康成年人群尿中PNP浓度与甲状腺功能的相关性及是否存在性别差异。
方法
基于2007—2008年美国国家营养与健康调查,将1071例同时具有尿PNP、血清甲状腺功能指标的20~64岁健康成年人纳入本研究。收集血清甲状腺刺激素(TSH)、游离三碘甲状腺原氨酸(FT3)、游离甲状腺激素(FT4)、总三碘甲状腺原氨酸(TT3)、总甲状腺激素(TT4)、甲状腺球蛋白(TG)、甲状腺球蛋白抗体(TG-Ab)数据以评估甲状腺功能。采用广义线性模型分析尿PNP与血清甲状腺功能指标的关系及剂量-反应关系,并分析性别差异。
结果
总人群中尿PNP的检出率为92.5%,肌酐校正后质量分数中位数为0.62 μg·g−1。男性和女性肌酐校正后尿PNP质量分数中位数分别是0.60、0.66 µg·g−1。总人群中主要甲状腺功能指标TSH、FT3、FT4、TT3、TT4的活性或质量浓度中位数分别为1500.00 μIU·L−1、3200.00 pg·L−1、8.00 ng·L−1、1140.00 ng·L−1、76.00 μg·L−1。在总人群中,尿PNP每增加一个对数单位,血清FT3、FT4、TT3分别下降1050.00 pg·L−1 (b=−0.02,95%CI:−0.02~−0.01)、10.50 ng·L−1 (b=−0.02,95%CI:−0.03~−0.01)和10.50 ng·L−1 (b=−0.02,95%CI:−0.03~−0.01),且存在剂量-反应关系(均P趋势<0.05)。性别分层后发现,在男性中,尿PNP每增加一个对数单位,血清TG-Ab水平增加1100.00 IU·L−1 (b=0.04,95%CI:0.00~0.08),血清FT3水平降低1020.00 pg·L−1 (b=−0.01,95%CI:−0.02~0.00),且存在剂量-反应关系(均P趋势<0.05)。在女性中,尿PNP每增加一个对数单位,血清FT3下降1050.00 pg·L−1(b=−0.02,95%CI:−0.03~−0.01),FT4下降10.50 ng·L−1(b=−0.02,95%CI:−0.03~0.00),TT3下降10.70 ng·L−1(b=−0.03,95%CI:−0.05~−0.01),TT4下降10.50 μg·L−1(b=−0.02,95%CI:−0.04~0.00),且尿PNP水平与血清FT3和TT3水平均呈现剂量-反应关系(均P趋势<0.001)。
结论
尿中PNP浓度变化会导致血清FT4、FT3、TT3水平变化,并表现出性别差异。
Abstract:
Background
Parathion and methyl parathion are typical organophosphorus insecticides and para−nitrophenol (PNP) is their main specific metabolite. Previous studies have shown that parathion and methyl parathion may play a role as endocrine disrupting chemicals, but the evidence is limited.
Objective
Our aim is to evaluate association between urinary PNP concentration and thyroid function among healthy adults and whether this association has gender differences.
Methods
The study was based on the 2007—2008 US National Health and Nutrition ExaminationSurvey (NHANES). A total of 1071 subjects aging from 20 to 64 years with data on both urinary PNP and serum thyroid function indicators were finally enrolled. Thyroid function was evaluated by measuring serum thyroid stimulating hormone (TSH), free triiodothyronine (FT3), free thyroxine (FT4), total triiodothyronine (TT3), total thyroxine (TT4), thyroglobulin (TG), and thyroglobulin antibody (TG-Ab). A generalized linear model was used to analyze the relationship between urinary PNP and serum thyroid function indicators and the dose-response relationship. Gender differences were also explored.
Results
In the total population, the positive rate of PNP was 92.5%, and the median urinary PNP concentration adjusted for urinary creatinine was 0.62 μg·g−1. The median creatinine-adjusted urinary PNP concentrations in the male and female populations were 0.60 and 0.66 µg·g−1 respectively. The median activities or concentrations of serum thyroid function indicators TSH, FT3, FT4, TT3, and TT4 in the total population were 1500.00 μIU·L−1, 3200.00 pg·L−1, 8.00 ng·L−1, 1140.00 ng·L−1, and 76.00 μg·L−1 respectively. In the total population, a logarithmic unit increase of urinary PNP was associated with 1050.00 pg·L−1 decrease in serum FT3 levels (b=−0.02, 95%CI: −0.02-−0.01), 10.50 ng·L−1 decrease in FT4 levels (b=−0.02, 95%CI: −0.03-−0.01), and 10.50 ng·L−1 decrease in TT3 levels (b=−0.02, 95%CI: −0.03-−0.01), all in a dose-response manner (all Ptrend<0.05). After sex stratification, for every logarithmic unit increase of urinary PNP, the serum TG-Ab level was increased by 1100.00 IU·L−1 (b=0.04, 95%CI: 0.00-0.08) and the serum FT3 level was reduced by 1020.00 pg·L−1 (b=−0.01, 95%CI: −0.02-0.00) among males, and both showed dose-response relationships (both Ptrend<0.05); every logarithmic unit increase of urinary PNP was associated with 1050.00 pg·L−1 decrease in FT3 levels (b=−0.02, 95%CI: −0.03-−0.01), 10.50 ng·L−1decrease in FT4 levels (b=−0.02, 95%CI: −0.03-0.00), 10.70 ng·L−1 decrease in TT3 levels (b=−0.03, 95%CI: −0.05-−0.01), and 10.50 μg·L−1 decrease in TT4 levels (b=−0.02, 95%CI: −0.04-0.00) among females, and there were dose-response relationships of urinary PNP concentration with serum FT3 and TT3 levels (both Ptrend<0.001).
Conclusion
Changes in the concentration of PNP in urine are associated with changes in serum FT4, FT3, and TT3 levels and the results also show gender differences.
图 1 研究对象筛选流程
Figure 1. Flowchart depicting the inclusion process
表 1 2007—2008年NHANES数据库中20~64岁健康成年人的一般人口学特征(n=1071)
Table 1 General demographic characteristics of healthy adults aged 20-64 years from the NHANES 2007—2008 (n=1071)
特征n构成比/%性别 男性57453.6 女性49746.4种族 墨西哥裔美国人21219.8 其他西班牙裔12511.7 非西班牙裔白人44741.7 非西班牙裔黑人22521.0 其他种族625.8教育水平 初中及以下10810.1 高中46443.3 大专及以上49946.6吸烟状态 吸烟者37234.7 非吸烟者69965.3碘状态 碘充足74769.7 碘缺乏32430.3饮酒状态 是71566.8 否17015.9 缺失18617.3表 2 2007—2008年NHANES数据库中20~64岁健康成年人尿PNP浓度和血清甲状腺功能指标水平[中位数(P25,P75)]
Table 2 Urinary PNP concentration and serum thyroid function indicator levels of healthy adults aged 20-64 years from the NHANES 2007—2008 [M (P25, P75)]
检测指标总人群(n=1071)男性(n=574)女性(n=479)PNP 肌酐校正前尿PNP质量浓度/(μg·L−1)0.76 (0.34, 1.50)0.85 (0.42, 1.60)0.66 (0.26, 1.37) 肌酐校正后尿PNP质量
分数/(μg·g−1)0.62 (0.34, 1.20)0.60 (0.35, 1.13)0.66 (0.33, 1.28)甲状腺功能 TSH活性/(μIU·L−1)1500.00 (1020.00, 2220.00)1460.00 (990.00, 2220.00)1520.00 (1050.00, 2220.00) FT3质量浓度/(pg·L−1)3200.00 (3000.00, 3500.00)3300.00 (3100.00, 3600.00)3100.00 (2900.00, 3400.00) FT4质量浓度/(ng·L−1)8.00 (7.00, 8.00)8.00 (7.00, 8.00)8.00 (7.00, 8.00) TT3质量浓度/(ng·L−1)1140.00
(1020.00, 1280.00)1160.00
(1040.00, 1290.00)1120.00
(990.00, 1260.00) TT4质量浓度/(μg·L−1)76.00 (66.00, 86.00)74.00 (65.00, 84.00)79.00 (69.00, 89.00) TG质量浓度/(μg·L−1)10.46 (6.53, 16.92)10.12 (6.62, 15.87)10.94 (6.31, 18.27) TG-Ab活性/(IU·L−1)600.00 (600.00, 2100.00)600.00 (600.00, 1290.00)600.00 (600.00, 3220.00)
表 3 2007—2008年NHANES数据库中20~64岁健康成年人尿PNP浓度和血清甲状腺功能指标水平的相关性[b(95%CI)]
Table 3 Correlation of urinary PNP concentration and serum thyroid function indicator levels of healthy adults aged 20-64 years from the NHANES 2007—2008 [b (95%CI)]
PNPlgTSHalgFT3 algFT4algTT3algTT4algTGalgTG-Aba总人群 (n=1071)连续变量b0.01(−0.03~0.05)−0.02(−0.02~−0.01)**−0.02(−0.03~−0.01)*−0.02(−0.03~−0.01)*−0.01(−0.02~0.00)0.02(−0.01~0.05)0.02(−0.04~0.07)分类变量 c Q1参照参照参照参照参照参照参照 Q2−0.01(−0.05~0.04)0.00(−0.01~0.00)−0.01(−0.02~0.00)−0.01(−0.02~0.01)−0.01(−0.02~0.00)0.01(−0.02~0.05)−0.02(−0.08~0.04) Q3−0.01(−0.06~0.04)−0.01(−0.02~0.00)−0.01(−0.02~0.00)−0.02(−0.03~−0.01)*−0.01(−0.02~0.01)0.00(−0.04~0.04)0.01(−0.05~0.07) Q42.00(−0.05~0.05)−0.02(−0.03~−0.01)**−0.02(−0.03~0.00)*−0.03(−0.04~−0.01)**−0.01(−0.02~0.01)0.02(−0.01~0.06)0.01(−0.06~0.07) P趋势0.811<0.0010.021<0.0010.2420.2870.657男性 (n=575)连续变量b0.02(−0.03~0.08)−0.01(−0.02~0.00)*−0.01(−0.03~0.00)−0.01(−0.02~0.01)0.00(−0.02~0.01)0.02(−0.05~0.08)0.04(0.00~0.08)*分类变量 c Q1参照参照参照参照参照参照参照 Q2−0.22(−0.09~0.04)−0.01(−0.02~0.00)−0.01(−0.02~0.01)0.00(−0.02~0.02)0.00(−0.02~0.02)0.02(−0.06~0.10)−0.01(−0.05~0.04) Q3−0.04(−0.10~0.02)−0.01(−0.02~0.01)−0.01(−0.03~0.00)−0.02(−0.03~0.00)−0.01(−0.02~0.01)0.05(−0.03~0.12)−0.02(−0.07~0.02) Q40.02(−0.04~0.09)−0.02(−0.03~−0.01)*−0.01(−0.03~0.00)−0.01(−0.03~0.01)0.00(−0.02~0.02)0.01(−0.07~0.08)0.06(0.02~0.10)* P趋势0.2590.0030.1440.1660.9330.9260.002女性 (n=497)连续变量b0.00(−0.06~0.05)−0.02(−0.03~−0.01)*−0.02(−0.03~0.00)*−0.03(−0.05~−0.01)*−0.02(−0.04~0.00)*0.01(−0.07~0.09)0.00(−0.05~0.05)分类变量c Q1参照参照参照参照参照参照参照 Q20.01(−0.06~0.08)−0.01(−0.02~0.01)−0.01(−0.03~0.01)−0.02(−0.04~0.01)−0.01(−0.03~0.01)−0.04(−0.14~0.05)0.02(−0.04~0.09) Q30.04(−0.03~0.11)−0.01(−0.03~0.00)−0.01(−0.03~0.01)−0.02(−0.04~0.00)*−0.01(−0.03~0.01)0.03(−0.07~0.13)−0.03(−0.09~0.04) Q4−0.02(−0.09~0.06)−0.02(−0.04~−0.01)*−0.02(−0.04~0.00)−0.04(−0.06~−0.02)*−0.02(−0.04~0.00)0.01(−0.09~0.12)−0.01(−0.08~0.05) P趋势0.562<0.0010.128<0.0010.1080.5870.431[注]*:P<0.05;**:P<0.001。a:协变量为种族、性别、吸烟状态、碘状态。b:肌酐校正后的PNP质量分数经lg10转换。c:肌酐校正后的PNP质量分数分为Q1(<0.34 μg·g−1)、Q2(0.34~<0.62 μg·g−1)、Q3(0.62~<1.20 μg·g−1)、Q4(≥1.20 μg·g−1)组。其中男性分为Q1(<0.35μg·g−1)、 Q2(0.35~<0.59 μg·g−1)、Q3(0.59~<1.13 μg·g−1)、Q4(≥1.13 μg·g−1)组;女性分为Q1(<0.33 μg·g−1)、Q2(0.33~<0.66 μg·g−1)、Q3(0.66~<1.29 μg·g−1)、Q4(≥1.29 μg·g−1)组。 [1]Parathion[J]. IARC Monogr Eval Carcinog Risk Chem Hum, 1983, 30: 153-181.
[2]CCANCCAPA A, MASIÁ A, ANDREU V, et al. Spatio-temporal patterns of pesticide residues in the Turia and Júcar Rivers (Spain)[J]. Sci Total Environ, 2016, 540: 200-210. doi: 10.1016/j.scitotenv.2015.06.063
[3]GARCIA S J, ABU-QARE A W, MEEKER-O'CONNELL W A, et al. Methyl parathion: a review of health effects[J]. J Toxicol Environ Health B Crit Rev, 2003, 6(2): 185-210. doi: 10.1080/10937400306471
[4]Methyl parathion[J]. IARC Monogr Eval Carcinog Risk Chem Hum, 1983, 30: 131-152.
[5]EDWARDS F L, YEDJOU C G, TCHOUNWOU P B. Involvement of oxidative stress in methyl parathion and parathion-induced toxicity and genotoxicity to human liver carcinoma (HepG₂) cells[J]. Environ Toxicol, 2013, 28(6): 342-348. doi: 10.1002/tox.20725
[6]COCCO P. On the rumors about the silent spring. Review of the scientific evidence linking occupational and environmental pesticide exposure to endocrine disruption health effects[J]. Cad Saude Publica, 2002, 18(2): 379-402. doi: 10.1590/S0102-311X2002000200003
[7]SHRESTHA S, PARKS C G, GOLDNER W S, et al. Incident thyroid disease in female spouses of private pesticide applicators[J]. Environ Int, 2018, 118: 282-292. doi: 10.1016/j.envint.2018.05.041
[8]SHRESTHA S, PARKS C G, GOLDNER W S, et al. Pesticide use and incident hypothyroidism in pesticide applicators in the agricultural health study[J]. Environ Health Perspect, 2018, 126(9): 097008. doi: 10.1289/EHP3194
[9]GOLDNER W S, SANDLER D P, YU F, et al. Hypothyroidism and pesticide use among male private pesticide applicators in the Agricultural Health Study[J]. J Occup Environ Med, 2013, 55(10): 1171-1178. doi: 10.1097/JOM.0b013e31829b290b
[10]SANTOS R, PICCOLI C, CREMONESE C, et al. Thyroid and reproductive hormones in relation to pesticide use in an agricultural population in Southern Brazil[J]. Environ Res, 2019, 173: 221-231. doi: 10.1016/j.envres.2019.03.050
[11]FORTENBERRY G Z, HU H, TURYK M, et al. Association between urinary 3, 5, 6-trichloro-2-pyridinol, a metabolite of chlorpyrifos and chlorpyrifos-methyl, and serum T4 and TSH in NHANES 1999-2002[J]. Sci Total Environ, 2012, 424: 351-355. doi: 10.1016/j.scitotenv.2012.02.039
[12]Centers for Disease Control and Prevention. Third national report on human exposure to environmental chemicals[R]. Atlanta, GA: NCEH Publication, 2005.
[13]JAIN R B. Variability in the levels of 3-phenoxybenzoic acid by age, gender, and race/ethnicity for the period of 2001-2002 versus 2009-2010 and its association with thyroid function among general US population[J]. Environ Sci Pollut Res Int, 2016, 23(7): 6934-6939. doi: 10.1007/s11356-015-5954-9
[14]LI L, ZHAI Z, LIU J, et al. Estimating industrial and domestic environmental releases of perfluorooctanoic acid and its salts in China from 2004 to 2012[J]. Chemosphere, 2015, 129: 100-109. doi: 10.1016/j.chemosphere.2014.11.049
[15]Centers for Disease Control and Prevention. National health and nutrition examination survey, 2007-2008 data documentation, codebook, and frequencies demographic variables & sample weights[EB/OL]. (2009-09). https://wwwn.cdc.gov/Nchs/Nhanes/2007-2008/DEMO_E.htm.
[16]Centers for Disease Control and Prevention. NHANES 2007-2008 laboratory data [EB/OL]. [2021-02-15]. https://wwwn.cdc.gov/Nchs/Nhanes/Search/DataPage.aspx?Component=Laboratory&CycleBeginYear=2007.
[17]OLSSON A O, BAKER S E, NGUYEN J V, et al. A liquid chromatography-tandem mass spectrometry multiresidue method for quantification of specific metabolites of organophosphorus pesticides, synthetic pyrethroids, selected herbicides, and deet in human urine[J]. Anal Chem, 2004, 76(9): 2453-2461. doi: 10.1021/ac0355404
[18]TAMANG M K, GELAL B, TAMANG B, et al. Excess urinary iodine concentration and thyroid dysfunction among school age children of eastern Nepal: a matter of concern[J]. BMC Res Notes, 2019, 12(1): 294. doi: 10.1186/s13104-019-4332-y
[19]World Health Organization. Indicators for assessing iodine deficiency disorders and their control through salt iodization[M]. Geneva: WHO (World Health Organization), 1994.
[20]JAIN R B. Association between thyroid function and urinary levels of 3, 5, 6-trichloro-2-pyridinol: data from NHANES 2007-2008[J]. Environ Sci Pollut Res, 2017, 24(3): 2820-2826. doi: 10.1007/s11356-016-8007-0
[21]HU Y, ZHANG Z, QIN K, et al. Environmental pyrethroid exposure and thyroid hormones of pregnant women in Shandong, China[J]. Chemosphere, 2019, 234: 815-821. doi: 10.1016/j.chemosphere.2019.06.098
[22]LI A J, KANNAN K. Urinary concentrations and profiles of organophosphate and pyrethroid pesticide metabolites and phenoxyacid herbicides in populations in eight countries[J]. Environ Int, 2018, 121(Pt 2): 1148-1154.
[23]CHANG C, CHEN M, GAO J, et al. Current pesticide profiles in blood serum of adults in Jiangsu Province of China and a comparison with other countries[J]. Environ Int, 2017, 102: 213-222. doi: 10.1016/j.envint.2017.03.004
[24]BARR D B, TURNER W E, DIPIETRO E, et al. Measurement of p-nitrophenol in the urine of residents whose homes were contaminated with methyl parathion[J]. Environ Health Perspect, 2002, 110 Suppl 6 (Suppl 6): 1085-1091.
[25]CHIU Y H, WILLIAMS P L, MÍNGUEZ-ALARCÓN L, et al. Comparison of questionnaire-based estimation of pesticide residue intake from fruits and vegetables with urinary concentrations of pesticide biomarkers[J]. J Expo Sci Environ Epidemiol, 2018, 28(1): 31-39. doi: 10.1038/jes.2017.22
[26]PANUWET P, PRAPAMONTOL T, CHANTARA S, et al. Concentrations of urinary pesticide metabolites in small-scale farmers in Chiang Mai province, Thailand[J]. Sci Total Environ, 2008, 407(1): 655-668. doi: 10.1016/j.scitotenv.2008.08.044
[27]WYLIE B J, AE-NGIBISE K A, BOAMAH E A, et al. Urinary concentrations of insecticide and herbicide metabolites among pregnant women in rural Ghana: a pilot study[J]. Int J Environ Res Public Health, 2017, 14(4): 354. doi: 10.3390/ijerph14040354
[28]JARA E L, MUÑOZ-DURANGO N, LLANOS C, et al. Modulating the function of the immune system by thyroid hormones and thyrotropin[J]. Immunol Lett, 2017, 184: 76-83. doi: 10.1016/j.imlet.2017.02.010
[29]PREZIOSO G, GIANNINI C, CHIARELLI F. Effect of thyroid hormones on neurons and neurodevelopment[J]. Horm Res Paediatr, 2018, 90(2): 73-81. doi: 10.1159/000492129
[30]FITZGERALD S P, BEAN N G, FALHAMMAR H, et al. Clinical parameters are more likely to be associated with thyroid hormone levels than with thyrotropin levels: a systematic review and meta-analysis[J]. Thyroid, 2020, 30(12): 1695-1709. doi: 10.1089/thy.2019.0535
[31]WU Y, SHI X, TANG X, et al. The correlation between metabolic disorders and Tpoab/Tgab: a cross-sectional population-based study[J]. Endocr Pract, 2020, 26(8): 869-882. doi: 10.4158/EP-2020-0008
[32] 刘苹, 文卫华, 宋肖肖, 等. 氯氰菊酯和甲基对硫磷混配对大鼠内分泌和免疫系统的影响——Ⅰ. 剂量-效应关系[J]. 卫生研究, 2006, 35(3): 257-260. doi: 10.3969/j.issn.1000-8020.2006.03.001LIU P, WEN W, SONG X, et al. Effects of mixed cypermethrin and methylparathion on endocrine hormone levels and immune functions in rats: I. Dose-response relationship[J]. J Hyg Res, 2006, 35(3): 257-260. doi: 10.3969/j.issn.1000-8020.2006.03.001
[33]BOGAZZI F, RAGGI F, ULTIMIERI F, et al. Effects of a mixture of polychlorinated biphenyls (Aroclor 1254) on the transcriptional activity of thyroid hormone receptor[J]. J Endocrinol Invest, 2003, 26(10): 972-978. doi: 10.1007/BF03348194
[34]QATANANI M, ZHANG J, MOORE D D. Role of the constitutive androstane receptor in xenobiotic-induced thyroid hormone metabolism[J]. Endocrinology, 2005, 146(3): 995-1002. doi: 10.1210/en.2004-1350
[35]MEEKER J D, BARR D B, RYAN L, et al. Temporal variability of urinary levels of nonpersistent insecticides in adult men[J]. J Expo Sci Environ Epidemiol, 2005, 15(3): 271-281. doi: 10.1038/sj.jea.7500402
相关知识
盘点:甲状腺激素水平对人体健康的影响
体脂分布与肾结石之间的关联:来自美国人群的证据
Nat Med:基于73万人遗传和健康数据揭示遗传风险因素对寿命的影响
重金属宫内暴露对胎儿DNMT3B基因甲基化的影响
中国健康医疗大数据研究综述——基于期刊论文的分析
环境污染对健康的影响
水体污染对人类健康的影响?
环境污染对肠道菌群和免疫系统的影响
孕妇不小心吃了含特丁基对苯二酚的食物 特丁基对苯二酚对人身体有伤害吗
【综述】妊娠期碘营养状况对母儿健康的影响
网址: 健康成年人群尿中对硝基酚水平对甲状腺功能的影响——基于美国NHANES数据库 https://www.trfsz.com/newsview308628.html
推荐资讯
- 1发朋友圈对老公彻底失望的心情 12775
- 2BMI体重指数计算公式是什么 11235
- 3补肾吃什么 补肾最佳食物推荐 11199
- 4性生活姿势有哪些 盘点夫妻性 10428
- 5BMI正常值范围一般是多少? 10137
- 6在线基础代谢率(BMR)计算 9652
- 7一边做饭一边躁狂怎么办 9138
- 8从出汗看健康 出汗透露你的健 9063
- 9早上怎么喝水最健康? 8613
- 10五大原因危害女性健康 如何保 7828
