首页 资讯 锂离子电池健康状态的在线检测方法与流程

锂离子电池健康状态的在线检测方法与流程

来源:泰然健康网 时间:2025年07月13日 21:33

本发明属于锂电池领域,尤其涉及一种锂离子电池健康状态的在线检测方法。

背景技术:

锂离子电池因具有能量密度高、循环寿命长、无记忆效应等优点被广泛应用于手机、笔记本电脑、移动电源、电动汽车及储能领域。而电池作为一种电化学能源,在使用过程中会发生性能劣化,甚至由于使用不当或恶劣环境等因素导致电池发生热失控等安全事故,因此在实际使用过程中,必须对电池的健康状态进行实时的检测,以确保在使用过程中的安全性。

目前对电池健康状态的检测方式基本都是离线的,将电池从终端产品如电脑、电动汽车或储能系统中取出,通过高精度的充放电测试仪、内阻仪、电化学工作站等设备测量电池的各个参数,以此来判断电池的健康状态。例如专利公告号cn107015156b的专利文献公开了一种电池健康状态检测方法,其特征在于包括以下步骤:确定电池当前状态的步骤;选取合适的电流倍率与充放电区间的步骤,依据电池的基本参数,选取充放电电流大小和充放电截止条件;按照选取的充放电区间对电池进行充放电实验,电压测量模块记录充放电过程中的电压值,电流测量模块记录电流值,以及进行充放电实验的时间;控制充放电电流相等,计算出充放电过程中充入的能量和放出的能量的能量损耗的表征内阻,得到电池健康状态阶段。本发明的检测方法和装置建立了直接以微循环表征内阻表征锂离子电池soh的方法与体系,使得检测时间缩短,检测方式简化,能够极大的推动电池的检测和维护的效率。专利公告号cn103344920a的专利文献公开了一种检测电池健康状态的方法,包括:检测电池的电池内压;依据所述电池内压从预先生成的对应关系中获得电池的电池健康状态soh;所述对应关系为电池的soh与电池内压的对应关系。现有技术尚不能根据电池工作运行过程中采集的参数进行在线分析,实现对电池健康状态的在线检测,因此所述离线检测方法不能及时的反映电池运行过程中的健康状态。

技术实现要素:

本发明的目的在于克服上述技术的不足,而提供一种锂离子电池健康状态的在线检测方法,通过对电池在工作运行过程中的充放电数据(容量、能量)等参数的简单处理,得到极化电压增长率来表征电池的健康状态。

本发明为实现上述目的,采用以下技术方案:一种锂离子电池健康状态的在线检测方法,其特征是:根据测试样本电池在历次充放电过程中的容量及能量数据实时计算电池的极化电压增长率,并通过与标准数据库中的实验电池极化电压增长率的阈值比对,快速实现对测试样本电池健康状态的在线检测,具体步骤如下:

第一步:测试样本电池在历次充放电过程中的容量及能量数据,以充

-

电总能量除以充电总容量计算得到电池在充电过程中的平均电压vc,以

-

放电总能量除以放电总容量计算得到电池在放电过程中的平均电压vd,

--

然后据此计算电池在每次循环过程中的极化电压vp=1/2(vc-vd);

第二步:计算测试样本电池在第n次循环中的极化电压vp,n相对于初次循环时的极化电压vp,0的极化电压增长率δvp,n=(vp,n-vp,0)/vp,0;

第三步:将在线实时检测的电池极化电压增长率δvp,n与标准数据库中实验电池在对应工作条件下测得的极化电压增长率的阈值δvp,lim进行比对,来确定测试样本电池的健康状态:当δvp,n<δvp,lim时,判定电池健康状态良好;而当δvp,n≥δvp,lim时,即判定电池发生或即将发生失效;所述标准数据库中不同体系或不同型号的实验电池在不同工作条件下的极化电压增长率的阈值δvp,lim通过实验测试或模拟计算获得。

所述实验电池的不同体系根据电池的配方组分进行区分,不同型号包括方型、圆型或软包装各个类型电池的各种尺寸产品,不同工作条件包括充放电电流、电压、温度及湿度影响电池性能发挥的因素。

所述实验电池在不同工作条件下的循环测试数据处理方法:以实验电池循环次数为横坐标,以循环过程中的极化电压增长率为纵坐标作图,得到极化电压随循环过程的变化曲线,当极化电压增长率发生突然增大时,且对应的实验电池循环性能发生快速衰减,将此时的极化电压增长率设为阈值δvp,lim。

有益效果:与现有技术相比,本发明基于电池在工作运行过程中的充放电数据(容量、能量)进行电池健康状态在线检测,该方法所需参数易获取,因此具有极高的普适性和经济性。尤其易于整合到电池管理系统中,该方法在电池管理系统中不需增加其他的检测部件及高精度的检测需求,即可实现对电池健康状态的在线检测。因此该检测方法在各种应用环境中具有普遍的适用性和可行性,实用价值高。因此在动力及储能应用领域中具有实时在线检测及提前预警的优势。

附图说明

图1是实施例1中测试样本电池循环1000次时的极化电压增长率随循环过程的变化曲线;

图2a是实施例1中测试样本电池循环1000次时的容量保持率随循环次数的变化曲线;

图2b是实施例1中测试样本电池循环1057次时的容量保持率随循环次数的变化曲线;

图3是实施例1中标准数据库中电池的极化电压增长率随循环次数的变化曲线;

图4是实施例1中标准数据库中电池的容量保持率随循环次数的变化曲线。图5是实施例2中测试样本电池循环945次时的极化电压增长率随循环过程的变化曲线;

图6a是实施例2中测试样本电池循环945次时的容量保持率随循环次数的变化曲线;

图6b是实施例2中测试样本电池循环1037次时的容量保持率随循环次数的变化曲线;

图7是实施例2中标准数据库中电池的极化电压增长率随循环次数的变化曲线;

图8是实施例2中标准数据库中电池的容量保持率随循环次数的变化曲线。

具体实施方式

需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。下面以商业化圆柱型锂离子电池的测试为例,结合附图详细说明本发明的具体实施方式。

众所周知,电池在实际的充放电使用过程中是存在极化的,且电池在充电过程中由于极化现象导致电池电压偏高,即充电电压=理论电压+极化电压,而放电过程中同样由于极化现象导致电池放电过程电压偏低,即放电电压=理论电压-极化电压。将充放电过程综合起来考虑,则充电电压-放电电压=(理论电压+极化电压)+(理论电压-极化电压)=2极化电压,因此可由此计算电池的极化电压=1/2(充电电压-放电电压),以充放电过程的平均电压来简化计算电池在充放电过程中的平均极化电压=1/2(充电平均电压-放电平均电压)。

本发明基于以上分析,通过对电池充放电过程的常规数据采集,提出一种锂离子电池健康状态的在线检测方法。

实施例1

本实施例提供了一种锂离子电池健康状态的在线检测方法,根据测试样本电池在历次充放电过程中的容量及能量数据实时计算电池的极化电压增长率,并通过与标准数据库中的实验电池极化电压增长率的阈值比对,快速实现对测试样本电池健康状态的在线检测。具体步骤如下:

第一步:测试样本电池在历次充放电过程中的容量及能量数据,以充

电总能量除以充电总容量计算得到电池在充电过程中的平均电压以

放电总能量除以放电总容量计算得到电池在放电过程中的平均电压

然后据此计算电池在每次循环过程中的极化电压

第二步:计算测试样本电池在第n次循环中的极化电压vp,n相对于初次循环时的极化电压vp,0的极化电压增长率δvp,n=(vp,n-vp,0)/vp,0;

第三步:将在线实时检测的电池极化电压增长率δvp,n与标准数据库中实验电池在对应工作条件下测得的极化电压增长率的阈值δvp,lim进行比对,来确定测试样本电池的健康状态:当δvp,n<δvp,lim时,判定电池健康状态良好;而当δvp,n≥δvp,lim时,即判定电池发生或即将发生失效;所述标准数据库中不同体系或不同型号的实验电池在不同工作条件下的极化电压增长率的阈值δvp,lim通过实验测试或模拟计算获得。

所述实验电池的不同体系根据电池的配方组分进行区分,不同型号包括方型、圆型或软包装各个类型电池的各种尺寸产品,不同工作条件包括充放电电流、电压、温度及湿度影响电池性能发挥的因素。

所述实验电池在不同工作条件下的循环测试数据处理方法:以实验电池循环次数为横坐标,以循环过程中的极化电压增长率为纵坐标作图,得到极化电压随循环过程的变化曲线,当极化电压增长率发生突然增大时,且对应的实验电池循环性能发生快速衰减,将此时的极化电压增长率设为阈值δvp,lim。

在本实施例中,测试样本以商业化的21700圆柱型锂离子电池为例,其容量为4.8ah。该电池循环测试环境为常温,循环制式为恒流恒压充电,恒流放电。恒流充电电流为3.36a,充电截止电压为4.2v,恒压充电截止电流为0.24a;恒流放电电流为4.8a,截止电压为2.7v。

电池测试设备为常规的充放电仪,本实施例中采用设备为arbinbt2000充放电测试系统。

第一步:在线检测测试样本电池在历次充放电过程中的容量及能量数据,以充电总能量除以充电总容量计算得到电池在充电过程中的平均电压以放电总能量除以放电总容量计算得到电池在放电过程中的平均电压然后据此计算电池在每次循环过程中的极化电压

表1样品电池循环过程中采集的容量及能量数据及计算

第二步:计算测试样本电池在第n次循环中的极化电压vp,n相对于初次循环时的极化电压vp,0的极化电压增长率δvp,n=(vp,n-vp,0)/vp,0。

如表1,每次循环对应的充电和放电的容量和能量数据为充放电仪所采集的数据。如第1次循环,电池充电能量为18.296wh,充电容量为4.766ah,以充电能量除以充电容量,计算电池第1次循环时的充电平均电压电池放电能量为16.636wh,放电容量为4.762ah,以放电能量除以放电容量,计算电池第1次循环时的放电平均电压则第1次循环中,电池的极化电压为第1次循环时的极化电压vp,1作为初次循环的极化电压vp,0=0.173v,因此第1次循环的极化电压增长率为δvp,1=(vp,1-vp,0)/vp,0=(0.173-0.173)/0.173=0%。

如第2次循环,电池充电能量为18.291wh,充电容量为4.766ah,以充电能量除以充电容量,计算电池第2次循环时的充电平均电压电池放电能量为16.636wh,放电容量为4.762ah,以放电能量除以放电容量,计算电池第2次循环时的放电平均电压则第2次循环中,电池的极化电压为以第2次循环时的极化电压vp,2=0.173v相对初次循环的极化电压vp,0=0.173v,计算第2次循环的极化电压增长率为δvp,2=(vp,2-vp,0)/vp,0=(0.171-0.173)/0.173=-1.1%。

当然,对于数据处理,可以在excel软件中直接设置相应的公式进行计算,即可得到每次循环过程中的极化电压增长率δvp,n。

第三步:将在线实时监测测试样本电池的极化电压增长率δvp,n与标准数据库中电池在对应工作条件下正常衰减时测得的极化电压增长率的阈值δvp,lim进行比对,来确定电池的健康状态:当δvp,n<δvp,lim时,判定电池健康状态良好;而当δvp,n≥δvp,lim时,即判定电池发生或即将发生失效。

当电池循环至1000次时,电池充电能量为15.906wh,充电容量为4.102ah,以充电能量除以充电容量,计算电池第1000次循环时的充电平均电压电池放电能量为14.248wh,放电容量为4.098ah,以放电能量除以放电容量,计算电池第1000次循环时的放电平均电压则第1000次循环中,电池的极化电压为以第1000次循环时的极化电压vp,2=0.201v相对初次循环的极化电压vp,0=0.173v,计算第1000次循环的极化电压增长率为δvp,1000=(vp,1000-vp,0)/vp,0=(0.201-0.173)/0.173=16.2%。

对电池在整个循环过程中的数据进行绘图分析,如附图1,以循环次数为横坐标,以极化电压增长率为做纵坐标作图,当电池循环至1000次时,由上计算可知其极化电压增长率为16.2%,高于标准数据库中13.0%的阈值(详见附图3-4),因此判断该电池即将发生失效。

虽然从附图2a电池在1000次循环时的容量保持率及循环趋势并不能看出电池性能的显著衰减,但是通过继续循环测试发现,如附图2b该电池在1000次循环后很快发生容量的快速衰减而失效。因此在线检测的极化电压增长率对电池健康状态诊断具有一定的提前警示性,当极化电压增长率超出阈值后,电池将在短时间内发生失效。

标准数据库中实验电池在常温模式相同循环制式下极化电压增长率阈值δvp,lim的获得过程如下:

采集实验电池在循环过程中充电和放电的容量及能量数据,与样品电池相同的方法计算出各个循环下的电池极化电压增长率数据,如表2所示。

以此数据绘图分析,如附图3,以实验电池循环次数为横坐标,以循环过程中的极化电压增长率为纵坐标作图,得到极化电压随循环过程的变化曲线;

表2实验电池循环过程中采集的容量及能量数据及计算

结合表2数据及附图3分析,当电池循环至1186次时,其极化电压增长率为13.0%,当电池再继续循环时,其极化电压增长率快速升高,1190次时极化电压增长率已快速增长至17.0%,从附图4可以发现当极化电压增长率发生突然增大后,电池循环性能也在随后发生快速衰减,因此,将此循环制式下的电池极化电压增长率阈值设置为13.0%,即δvp,lim=13.0%。

实施例2

在本实施例中,测试样本以商业化的21700圆柱型锂离子电池为例,其容量为4.8ah。该电池循环测试环境为45℃,循环制式为恒流恒压充电,恒流放电。恒流充电电流为3.36a,充电截止电压为4.2v,恒压充电截止电流为0.24a;恒流放电电流为4.8a,截止电压为2.7v。

电池测试设备为常规的充放电仪,本实施例中采用设备为arbinbt2000充放电测试系统。电池放在设置于45℃的爱斯佩克ph101高温试验箱中,以保持45℃±2℃环境下的恒温测试。

第一步:在线检测测试样本电池在历次充放电过程中的容量及能量数据,以充电总能量除以充电总容量计算得到电池在充电过程中的平均电压以放电总能量除以放电总容量计算得到电池在放电过程中的平均电压然后据此计算电池在每次循环过程中的极化电压

表3样品电池循环过程采集数据及计算

第二步:计算测试样本电池在第n次循环中的极化电压vp,n相对于初次循环时的极化电压vp,0的极化电压增长率δvp,n=(vp,n-vp,0)/vp,0。

如表3,每次循环对应的充电和放电的容量和能量数据为充放电仪所采集的数据。如第1次循环,电池充电能量为18.423wh,充电容量为4.774ah,以充电能量除以充电容量,计算电池第1次循环时的充电平均电压电池放电能量为16.725wh,放电容量为4.750ah,以放电能量除以放电容量,计算电池第1次循环时的放电平均电压则第1次循环中,电池的极化电压为第1次循环时的极化电压vp,1作为初次循环的极化电压vp,0=0.169v,因此第1次循环的极化电压增长率为δvp,1=(vp,1-vp,0)/vp,0=(0.169-0.169)/0.169=0%。

如第2次循环,电池充电能量为18.361wh,充电容量为4.758ah,以充电能量除以充电容量,计算电池第2次循环时的充电平均电压电池放电能量为16.690wh,放电容量为4.740ah,以放电能量除以放电容量,计算电池第2次循环时的放电平均电压则第2次循环中,电池的极化电压为以第2次循环时的极化电压vp,2=0.169v相对初次循环的极化电压vp,0=0.169v,计算第2次循环的极化电压增长率为δvp,2=(vp,2-vp,0)/vp,0=(0.169-0.169)/0.169=0%。

当然,对于数据处理,可以在excel软件中直接设置相应的公式进行计算,即可得到每次循环过程中的极化电压增长率。

第三步:将在线实时监测测试样本电池的极化电压增长率δvp,n与标准数据库中电池在45℃环境及相同循环制式下正常衰减时测得的极化电压增长率的阈值δvp,lim进行比对,来确定电池的健康状态:当δvp,n<δvp,lim时,判定电池健康状态良好;而当δvp,n≥δvp,lim时,即判定电池发生或即将发生失效。

如附图5,以循环次数为横坐标,以极化电压增长率为做纵坐标作图,当电池循环至945次时,其极化电压增长率为20.0%,达到标准数据库中20.0%的阈值(详见附图7),因此判断该电池即将发生失效。

从附图6a电池在945次循环时的容量保持率及循环趋势看,该电池仍保持良好的性能,但是通过继续循环测试发现,如附图6b该电池在980次次循环开始发生衰减的加速。因此在线检测的极化电压增长率对电池健康状态诊断具有一定的提前警示性,当极化电压增长率超出阈值后,电池将在短时间内发生失效。

标准数据库中实验电池在45℃恒温相同循环制式下极化电压增长率阈值δvp,lim的获得过程如下:

采集实验电池在循环过程中充电和放电的容量及能量数据,与样品电池相同的方法计算出各个循环下的电池极化电压增长率数据,如表4所示。

以此数据绘图分析,如附图7,以实验电池循环次数为横坐标,以循环过程中的极化电压增长率为纵坐标作图,得到极化电压随循环过程的变化曲线;

表4实验电池循环过程中采集的容量及能量数据及计算

结合表4数据及附图7分析,当电池循环至951次时,其极化电压增长率为20.0%,当电池再继续循环时,极化电压增长率曲线因增长率增大而偏离原来趋势,结合附图8的电池容量保持率曲线,可以发现当极化电压增长率发生增大后,电池循环性能也在随后发生快速衰减,因此,将此循环制式下的电池极化电压增长率阈值设置为20.0%,即δvp,lim=20.0%。

上述参照实施例对该一种锂离子电池健康状态的在线检测方法进行的详细描述,是说明性的而不是限定性的,可按照所限定范围列举出若干个实施例,因此在不脱离本发明总体构思下的变化和修改,应属本发明的保护范围之内。

相关知识

锂离子电池组单体容量及健康状态在线测量系统及方法与流程
一种识别老化模式的锂离子电池健康状态在线诊断方法与流程
电动汽车锂离子动力电池健康状态在线诊断方法
超声阻尼:锂离子电池荷电状态无损检测新方法
锂离子电池寿命测试与健康状态估计
基于模型的锂离子电池健康状态预测
锂离子电池健康状态估计方法研究现状与展望
锂离子电池的健康状态评估
一种动力电池健康状态检测及预警的方法与流程
锂离子电池健康状态评估及剩余寿命预测方法

网址: 锂离子电池健康状态的在线检测方法与流程 https://www.trfsz.com/newsview1549438.html

推荐资讯